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Theoretical analysis of acoustic stop bands in two-dimensional periodic scattering arrays

You-Yu Chen and Zhen Ye
Wave Phenomena Laboratory, Department of Physics, National Central University, Chungli, Taiwan 32054

~Received 17 April 2001; published 29 August 2001!

This paper presents a theoretical analysis of the recently reported observation of acoustic stop bands in
two-dimensional scattering arrays@Robertson and Rudy, J. Acoust. Soc. Am.104, 694 ~1998!#. A self-
consistent wave scattering theory, incorporating all orders of multiple scattering, is used to obtain the wave
transmission. The band structures for the regular arrays of cylinders are computed using the plane-wave
expansion method. The theoretical results compare favorably with the experimental data.
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I. INTRODUCTION

When propagating through media containing many sc
terers, waves will be scattered by each scatterer. The s
tered waves will be scattered again by other scatterers.
process is repeated to establish an infinite iterative patter
rescattering between scatterers, forming a multiple scatte
process@1#. Multiple scattering of waves is responsible for
wide range of fascinating phenomena, including such
twinkling light in the evening sky and modulation of ocea
ambient sound@2,3#. On smaller scales, phenomena such
electron transport in impure solids@4# are also results o
multiple scattering. When waves propagate through me
with periodic structures, the multiple scattering leads to
phenomenon of band structures. That is, waves can pr
gate in certain frequency ranges and follow certain disp
sion relations, while in other frequency regimes wave pro
gation may be stopped. The former ranges are called allo
bands and the latter the forbidden bands.

The wave dispersion bands were first studied for el
tronic waves in solids, providing the basis for understand
the properties of conductors, semiconductors, and insula
@5#. In late 1980s, it became known that such a wave b
phenomenon is also possible for classical waves. The stu
on manipulation of classical waves were started with elec
magnetic waves in media with periodically modulated refr
tive indices@6#. Since then, optical wave bands have be
extensively studied, yielding a rich body of literature@7#.
The theoretical calculations have proven to match well w
the experimental observations@8#. The modulation of optical
waves by periodic media has led to a number of pract
applications including the design of photonic crystals@9#, the
optical fibers@10#, and waveguide devices@11#. Recently, it
has also been found that a living organism may also disp
a remarkable photonic engineering@12#.

In contrast, research on acoustic wave band structures
just started~for example, refer to@13#!. Although theoretical
computations of band structures have been well docume
for periodic acoustic structures@14#, the experimental work
was only recent, and to date only a limited number of m
surements have been reported. One of the first observa
was made on acoustic attenuation by a minimalist sculp
@15# and further studied in the laboratory@16#. The authors
obtained a sound attenuation spectrum, which was later v
fied by the band structure computation@17,18#. Recently,
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acoustic band structures have been further measured
acoustic transmission through two-dimensional~2D! periodic
arrays of metal cylinders placed in the air@13#. The authors
reported experimental observation of acoustic stop bands
wave transmission for both square and triangular arrays.
impulse response technique was used to determine the t
mission over a broad frequency band width, whereas
acoustic dispersion relation was extracted from the phase
formation.

The main purpose of this paper is to provide a theoret
investigation of sound transmission by 2D arrays of rig
cylinders in air in line with the experiment described b
Robertson and Rudy@13#, providing a direct comparison o
the acoustic transmission between theory and experim
For the purpose, we employ a self-consistent multiple sc
tering theory @19# to compute the acoustic transmissio
through arrays of scattering cylinders. Meanwhile, the aco
tic band structures are computed using the plane-w
method well prescribed by Kushwaha@14#. We will show
that the theoretical results agree very well with the obser
tion.

II. FORMULATION OF THE PROBLEM

A. Acoustic scattering by arrays of parallel cylinders

ConsiderN straight identical cylinders located atrW i with
i 51,2, . . . ,N to form either a regular lattice~or a random
array! perpendicular to thex-y plane; the regular arrange
ment can be adjusted to comply with the experiment@13#.
There are two types of the regular arrangements of the
inders: the square lattice and the triangular lattice. The c
inders are along thez axis. An acoustic source transmittin
monochromatic waves is placed atrWs , some distance from
the array. The scattered wave from each cylinder is a
sponse to the total incident wave composed of the dir
wave from the source and the multiply scattered waves fr
other cylinders. The final wave reaches a receiver locate
rW r is the sum of the direct wave from the source and
scattered waves from all the cylinders. The cylinders use
the experiment are metal cylinders. Numerical computat
verifies that for acoustic scattering, the effect due to the sh
modulus is negligible for such a cylinder in air. This has a
been confirmed by experiments@16#. When the shear wave
©2001 The American Physical Society16-1



c

b
t

e
th
a
re

e
d
a
n

st

,

ce
e

, w
de

in

rce

YOU-YU CHEN AND ZHEN YE PHYSICAL REVIEW E64 036616
are ignored, the exact solution for the scattering process
be conveniently formulated, following Twersky@19#.

To exactly reproduce the experimental data, it would
necessary to know the information about the apparatus,
acoustic pulses generated, the lab environment, and th
rangement of the sounding and receiving devices. As
information is not readily available and is also unnecess
for the present theoretical investigation, we make certain
sonable simplifications.

For simplicity yet without compromising generality, w
approximate the acoustic source as a line source locate
origin, i.e., rWs50, the numerical computation indicates th
the difference between a line source and a plane wave is
essential. Without the cylinders, the wave is governed by

~¹W 21k2!G~rW !524pd (2)~rW !, ~1!

In the cylindrical coordinates, the solution is

G~rW !5 ipH0
(1)~kr !. ~2!

whereH0
(1) is the zeroth order Hankel function of the fir

kind. In this section,i stands forA21.
With N cylinders located atrW i ( i 51,2, . . . ,N), the scat-

tered wave from thej th cylinder can be written as

ps~rW,rW j !5 (
n52`

`

ipAn
j Hn

(1)~kurW2rW j u!einfrW2rW j, ~3!

whereHn
(1) is thenth order Hankel function of the first kind

An
i is the coefficient to be determined, andf rW2rW j

is the azi-

muthal angle of the vectorrW2rW i relative to the positivex
axis.

The total wave incident around thei th scattererpin
i (rW) is a

superposition of the direct contribution from the sour
p0(rW)5G(rW) and the scattered waves from all other scatt
ers

pin
i ~rW !5p0~rW !1 (

j 51,j 5” i

N

ps~rW,rW j !. ~4!

In order to seperate the governing equations into modes
can express the total incident wave in term of the mo
aboutrW i :

pin
i ~rW !5 (

n52`

`

Bn
i Jn~kurW2rW i u!einfrW2rW i. ~5!

The expansion is in terms of Bessel functions of the first k
Jn to ensure thatpin

i (rW) does not diverge asrW→rW i . The co-
efficientsBn

i are related to theAn
j in Eq. ~3! through Eq.~4!.

A particularBn
i represents the strength of thenth mode of the

total incident wave on thei th scatterer with respect to thei th
scatterer’s coordinate system~i.e., aroundrW i). In order to
isolate this mode on the right-hand side of Eq.~4!, and thus
determine a particularBn

i in terms of the set ofAn
j , we need
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to expressps(rW,rW j ), for eachj 5” i , in terms of the modes with
respect to thei th scatterer. In other words, we wantps(rW,rW j )
in the form

ps~rW,rW j !5 (
n52`

`

Cn
j ,iJn~kurW2rW i u!eifrW2rW i. ~6!

This can be acheived~i.e., Cn
j ,i expressed in terms ofAn

i )
through the following addition theorem@20#

Hn
(1)~kurW2rW j u!einfrW2rW j5einfrW i2rW j (

l 52`

`

Hn2 l
(1) ~kurW i2rW j u!

3e2 i l frW i2rW jJl~kurW2rW i u!eil frW2rW i.

~7!

Taking Eq.~7! into Eq. ~3!, we have

ps~rW,rW j !5 (
n52`

`

ipAn
j einfrW i

2rW j (
l 52`

`

Hn2 l
(1) ~kurW i2rW j u!

3e2 i l frW i2rW jJl~kurW2rW i u!eil frW2rW i. ~8!

Or by switching the order of summation, we have

ps~rW,rW j !5 (
l 52`

` F (
n52`

`

ipAn
j Hn2 l

(1) ~kurW i2rW j u!ei (n2 l )frW i2rW jG
3Jl~kurW2rW i u!eil frW2rW i. ~9!

Comparing with Eq.~6!, we see that

Cn
j ,i5 (

l 52`

`

ipAl
jHl 2n

(1) ~kurW i2rW j u!ei ( l 2n)frW i2rW j. ~10!

Now we can relateBn
i to Cn

j ,i ~and thus toAl
j ) through Eq.

~4!. First note that through the addition theorem the sou
wave can be written,

p0~rW !5 ipH0
(1)~kr !

5 ip (
l 52`

`

H2 l
(1)~kurW i u!e2 i l frW iJl~kurW2rW i u!eil frW2rW i

5 (
l 52`

`

Sl
iJl~kurW2rW i u!eil frW2rW i, ~11!

where

Sl
i5 ipH2 l

(1)~kurW i u!e2 i l frW i. ~12!

Matching coefficients in Eq.~4! and using Eqs.~5!, ~6!, and
~11!, we have

Bn
i 5Sn

i 1 (
j 51,j 5” i

N

Cn
j ,i , ~13!

or, expandingCn
j ,i ,
6-2
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Bn
i 5Sn

i 1 (
j 51,j 5” i

N

(
l 52`

`

ipAl
jHl 2n

(1) ~kurW i2rW j u!ei ( l 2n)frW i2rW j.

~14!

At this stage, both theSn
i are known, but bothBn

i andAl
j are

unknown. Boundary conditions will give another equati
relating them.

The boundary conditions are that the pressure and
normal velocity be continuous across the interface betwe
scatterer and the surrounding medium. The total wave
side the i th scatterer ispext5pin

i (rW)1ps(rW,rW i). The wave
inside thei th scatterer can be expressed as

pint
i ~rW !5 (

n52`

`

Dn
i Jn~k1

i urW2rW i u!einfrW2rW i. ~15!

The boundary conditions are then

pextu]V i5pintu]V i ~16!

and

1

r

]pext

]n U
]V i

5
1

r1
i

]pint

]n U
]V i

, ~17!

where]V i is the boundary of thei th scatterer,k and r are
the wave number and density of the surrounding mediu
and k1

i and r1
i are the wave number and density of thei th

scatterer, respectively. Using Eqs.~3!, ~5!, and ~15!, multi-
plying both sides of the boundary condition equations
einfrW2rW i, and integrating over the boundary]V i , we have for
the case of circular cylindrical scatterers,

Bn
i Jn~kai !1 ipAn

i Hn
(1)~kai !5Dn

i Jn~kai /hi !, ~18!

Bn
i Jn8~kai !1 ipAn

i Hn
(1)8~kai !5

1

gihi
Dn

i Jn8~kai /hi !.

~19!

Here ai is the radius of thei th cylinder, gi5r1
i /r is the

density ratio, andhi5k/k1
i 5c1

i /c is the sound speed ratio fo
the i th cylinder. Elimination ofDn

i gives

Bn
i 5 ipGn

i An
i , ~20!

where

Gn
i 5FHn

(1)~kai !Jn8~kai /hi !2gihiHn
(1)8~kai !Jn~kai /hi !

gihiJn8~kai !Jn~kai /hi !2Jn~kai !Jn8~kai /hi !
G .

~21!

If we define

Tn
i 5Sn

i / ip5H2n
(1)~kurW i u!e2 infrW i ~22!

and

Gl ,n
i , j 5Hl 2n

(1) ~kurW i2rW j u!ei ( l 2n)frW i2rW j, i 5” j , ~23!
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then Eq.~14! becomes

Gn
i An

i 2 (
j 51,j 5” i

N

(
l 52`

`

Gl ,n
i , j Al

j5Tn
i . ~24!

If the value ofn is limited to some finite range, then this is
matrix equation for the coefficientsAn

i . Once solved, the
total wave at any point outside all cylinders is

p~rW !5 ipH0
(1)~kurWu!1(

i 51

N

(
n52`

`

ipAn
i Hn

(1)~kurW2rW i u!einfrW2rW i.

~25!

We must stress that total wave expressed by Eq.~25! incor-
porate all orders of multiple scattering. We note, howev
that an inclusion of the lowest order in multiple scatteri
may be sufficient for certain situations~J. Sánchez-Dehesa
private communication!. We also emphasize that the abo
derivation is valid for any configuration of the cylinders.
other words, Eq.~25! works for situations that the cylinder
can be placed either randomly or orderly.

B. Band structures of regular arrays of cylinders

For a regular array of the cylinders, band structures
the wave propagation appear. The band structures ca
readily computed by the plane-wave method@14#. Though
the method has been well documented by Kushwaha@14#,
for the sake of convenience we outline the approach as
lows.

The wave equation is

¹W •F 1

r~rW !
¹W p~rW !G1

v2

r~rW !c2~rW !
p~rW !50, ~26!

wherer(rW) andc(rW) are the mass density and sound spe
respectively; both are modulated by the periodic structu
i.e., inside the cylinders the values are that of the cylinde
while outside the cylinders they take the values of the m
dium. According to Bloch’s theorem@5#, the solution of the
pressure field has the Bloch form

p~rW !5eiKW •rW(
GW

fKW ~GW !eiGW •rW, ~27!

whereKW is termed as the Bloch wave vector,GW is the recip-
rocal lattice vector@5#. The summation is made for all pos
sible reciprocal vectors.

For the periodic structures, bothr21 and (rc2)21 in Eq.
~26! can be expanded by discrete plane waves as follow

1

r~rW !
5(

GW
s~GW !eiGW •rW, and

1

r~rW !c2~rW !
5(

GW
h~GW !eiGW •rW.

~28!

As r(rW) and c(rW) are known parameters, boths(GW ) and
h(GW ) can be determined from an inverse Fourier transfo

Substituting Eqs.~27! and ~28! into Eq. ~26!, we obtain
6-3
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(
GW 8

@s~GW 2GW 8!~KW 1GW !•~KW 1GW 8!2h~GW 2GW 8!v2#fKW ~GW 8!

50, ~29!

which has the matrix form

(
GW 8

GGW ,GW 8fKW ~GW 8!50.

The dispersion relation connecting the frequencyv and the
wave vectorKW is determined by the secular equation

det@GGW ,GW 8#5det@s~GW 2GW 8!~KW 1GW !•~KW 1GW 8!

2h~GW 2GW 8!v2#GW ,GW 8

50, ~30!

where ‘‘det’’ denotes the determinant. Equation~30! leads to
the dispersion relation between the frequencyv(KW ) and the
wave vectorKW . We use the standard eigenvalue invers
method in the IMSL library to solve Eq.~30! to obtain the
dispersion relation.

III. NUMERICAL RESULTS

Numerical computation has been performed to obtain
transmitted acoustic wave and the acoustic band structu
In particular, the numerical computation has been carried
for the experimental situations@13#.

First we consider the transmitted waves described by
~25!. In the simulation, all the cylinders are assumed to
the same, in accordance with the experiment. Moreover,
radii of the cylinders and the lattice constants are also ta
from the experiment. Several values for the acoustic c
trasts between the cylinder and the air and different cylind
including the conduit cylinders originally used in the expe
ment were used in the initial stage of computation. We fou
that the results are in fact insensitive to the detailed mate
composition of the cylinders as long as the contrasts exc
a certain value. This agrees with the previous experime
observation@16# and the theoretical results@18#. In the
present computation, we also allow the total number of
cylinders to vary from 36 to 500. The cylinders are placed
form a square lattice or a triangular lattice.

Assume that the lattice spacing isa, the diameter of the
cylinders isd. For the square lattice, the filling factor, that
the fraction of the sample area occupied by the scatte
cylinders, is calculated as

f 5
pd2

4a2
. ~31!

For the triangular lattice, the filling factor is given as

f 5
pd2

2A3a2
. ~32!
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Here we note an editorial error in Eq.~2! of @13#. In the
experiment carried out in@13#, the following parameters are
used.

~1! For the square lattice,a53.7 cm andd52.34 cm.
This gives a filling factor of 0.31.

~2! For the triangular lattice, for the same cylinders, t
filling factor is fixed as 0.366, leading to a spacing of 3.6
cm.

The theoretical results show that the wave transmissio
sensitive to the filling factor, as well as the number of t
cylinders. In order to limit the possible finite size effects
that they do not obscure the observation of the band
effects, we found that we need to have more rods than u
in the experiment. For frequencies at which wave propa
tion is possible, there is sensitive interference between
propagating wave and the reflected waves at the bounda
yielding the familiar pattern of nulls and peaks. If there is
band gap, the transmission will not be possible within t
gap. Then the received signal is small, and the transmis
will be relatively insensitive to the boundary effects. In oth
words, the inhibition of a band gap will not be altered b
varying the sample size. Our numerical results confirm th

The transmission spectrum for the square lattice of
rods is presented in Fig. 1 for the propagation along theGX
~i.e., @100#! direction. In the computation, we set the numb
of cylinders to 200. The transmitter and receiver are pla
at such a small distance from the scattering array that
boundary effects do not suppress the band gaps. Here
observe a well defined inhibition regime ranging from abo
3 kHz to 5.5 kHz. Within this range of frequency, the tran
mission is significantly reduced. This agrees very well w
the experimental data shown in Fig. 3~a! of @13#. We have
also performed a series of numerical tests with respec
changing the number of cylinders or the shape of the ar
All results indicate that the regime of inhibition is rath
stable. For the transmission outside this regime, however
transmitted amplitude can vary significantly as the numbe
scatterers or the shape of the array changes. For example
transmission through an array of 10320 will differ from that

FIG. 1. Transmission as a function ofka along theGX ~i.e.,
@100#! direction for the square lattice.
6-4
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through an array of 8325, even with the same lattice con
stant. The oscillatory behavior for frequencies below 2.8 k
is purely caused by the boundary. They may or may
appear, depending on the arrangement of the array. Bu
inhibition behavior within the range between 3–5.5 kHz
mains quantitatively the same for both arrays. Such a st
inhibition regime is a clear indicator for the stop band. Th
will be further confirmed by the band structure calculati
given below.

We also performed the transmission calculation using
~25! for propagation along theGM ~i.e., @110#! direction. The
band structure calculation indicates a small stop band wi
about 5.6 and 6.0 kHz. Unfortunately, this stop band can
be clearly identified in our transmission calculation. In t
experiment, the transmission data in this case is also
compelling @13#. The authors of@13# then used the phas
information extracted from the Fourier transformed data
locate the anomalous phase delay caused by the stop b
Our numerical data on the phase delay is again less conv
ing. Several reasons may contribute to this. Among other
prominent reason may be due to the finite number of cy
ders. In principle, the stop band from the band structure
culation is obtained for an infinitely large array of scattere
The fact that there is only a small gap in this situation wo
imply that a vastly large number of scatterers is required
the transmission calculation. Our present computing fac
ties, however, do not allow us to simulate the scattering fr
an array of exceedingly large size.

We also performed numerical computation of the tra
mission through the triangular lattice. The transmission sp
trum is shown in Fig. 2 for wave propagation along theGX
direction. Again we observe a stop band between 4 kHz
5.7 kHz. This is also in remarkable agreement with the
perimental observation, referring to Fig. 4~a! of @13#. The
computation of the transmission along theGM direction is
also done. Like in the case of the square lattice, the b
structure calculation indicates a narrow stop band wit

FIG. 2. Transmission as a function ofka along theGX ~i.e.,
@100#! direction for the triangular lattice.
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about 5.1 and 5.4 kHz. Again the stop band cannot be cle
identified in our transmission calculation.

The theoretical dispersion relation is shown in Figs. 3 a
4 for the square and triangular lattices, respectively. The
perimental data read from@13# are also plotted as the blac
dots in the figures.

First we consider the square lattice case. Overall spe
ing, the experimental and theoretical data are in a go
agreement. The experimental data are only slightly low
than the theoretical prediction. For propagation along
GM direction, the experimental data agree remarkably w
with the theory for the first dispersion curve. For higher fr
quencies, the experimental data seem to follow third disp
sion band, though we see that some experimental data fa
the second band. The agreement between the theory an
experiment is slightly obscured by the presence of th
bands near the edge of the Brillouin zone. The theory p
dicts a small band gap, as discussed earlier. Near the b
gap, the theory and the experiment are in a slight discr
ancy. Again, for the transmission along theGX direction, the

FIG. 3. The theoretical dispersion relation is shown for t
square. The experimental data read from@13# are also plotted as the
black dots.

FIG. 4. The theoretical dispersion relation is shown for the
angular lattices. The experimental data read from@13# are also plot-
ted as black dots.
6-5
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agreement in the lower dispersion band appears better th
the higher band. A reason may be that the phase is relati
hard to accurately measure at high frequencies. For b
bands, the experimental data are lower than the predi
values. Comparing the band structure results in Fig. 3 w
the transmission results in Fig. 1, we see that the stop b
predicted from the transmission spectrum is also sligh
shifted toward lower frequencies. The further computat
indicates that such a very small shift is due to the fin
number of cylinders. Increasing the number of scatterers
lift a bit the stop band in the transmission spectrum.

Now we consider the triangular lattice. Again, from Fig.
we see that the agreement between the theory and the ex
ment is genuinely good, considering the complication
volved in the experiment. However, there are a few sm
discrepancies. First, the experiment observes a wider
band along theGX direction, and the experimental observ
tion of the stop band along theGM direction is not so obvi-
ous. From Fig. 4, we see that the two lowest dispers
bands are observed by experiment. In the triangular lat
e

,

pl
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case, the stop band estimated from the transmission spec
from Fig. 2 agrees with the dispersion band calculation in
GX direction.

IV. SUMMARY

In conclusion, in this paper we have presented a theo
ical analysis of the acoustic propagation through tw
dimensional regular arrays of parallel cylinders in air. A se
consistent method is used to compute the wave transmiss
taking into account all orders of multiple scattering. W
stress that this approach in fact allows us to consider
configuration of the scattering arrays. For the regular arra
the plane-wave method is used to calculate the band st
tures. Two lattice arrangements are considered. The th
are then applied to the experimental situations, yielding
vorable agreements.
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